public class CustomQuad{ //using the two-point formula for a straight line (Linear Equation) - from Wikipedia private boolean[] modifier = new boolean[4]; private double[] m = new double[4]; private double[] x1 = new double[4]; private double[] y1 = new double[4]; public CustomQuad(Point2D.Double corner1, Point2D.Double corner2, Point2D.Double corner3, Point2D.Double corner4){ m[0] = (corner2.y - corner1.y)/(corner2.x - corner1.x + 0.000000001); m[1] = (corner3.y - corner2.y)/(corner3.x - corner2.x + 0.000000001); m[2] = (corner4.y - corner3.y)/(corner4.x - corner3.x + 0.000000001); m[3] = (corner1.y - corner4.y)/(corner1.x - corner4.x + 0.000000001); x1[0] = corner1.x; x1[1] = corner2.x; x1[2] = corner3.x; x1[3] = corner4.x; y1[0] = corner1.y; y1[1] = corner2.y; y1[2] = corner3.y; y1[3] = corner4.y; calibrate(new Point2D.Double( (corner1.x + corner2.x + corner3.x + corner4.x)/4, (corner1.y + corner2.y + corner3.y + corner4.y)/4 )); } private void calibrate(Point2D.Double insidePoint){ modifier[0] = 0 < m[0]*(insidePoint.x - x1[0]) - insidePoint.y + y1[0]; modifier[1] = 0 < m[1]*(insidePoint.x - x1[1]) - insidePoint.y + y1[1]; modifier[2] = 0 < m[2]*(insidePoint.x - x1[2]) - insidePoint.y + y1[2]; modifier[3] = 0 < m[3]*(insidePoint.x - x1[3]) - insidePoint.y + y1[3]; } public boolean contains(Point2D.Double test){ return (modifier[0]^(0 >= m[0]*(test.x - x1[0]) - test.y + y1[0])) && (modifier[1]^(0 >= m[1]*(test.x - x1[1]) - test.y + y1[1])) && (modifier[2]^(0 >= m[2]*(test.x - x1[2]) - test.y + y1[2])) && (modifier[3]^(0 >= m[3]*(test.x - x1[3]) - test.y + y1[3])); } }
-- Skilgannon