Given an array of points (pe. a list of bearings) it gives you a good estimation of the probability for a given value (pe. bearing). Probably useful for WaveSurfing or Targeting algorithms.
It has several kernel functions. Just uncomment the one you want to use.
-- Albert
package apv; /** * KernelDensity - a class by Albert Perez * Based on the following explanation: https://www.xplore-stat.de/tutorials/smoothernode2.html * If you are using this code for Robocode, it i released under RWPCL * Check https://robowiki.net/cgi-bin/robowiki?RWPCL for the terms. */ public class KernelDensity { public static double densityAtPoint(double[] x, int n, double h, double p, double d) { return densityAtPoint(x, n, h, p, d, n); } public static double densityAtPoint(double[] x, int n, double h, double p, double d, int s) { // x is the array of sample data points (ordered by t, 0 is prev. n-1 is actual // n is the number of existing points in the array // h is the bandwidth // p is the point at which to calculate the estimate // d is the decay (assumes point at n-1 is the most recent one, then it weights the points as d^t) // decay is just an addition to allow weighting the most recent points // s is the window (number of points to use for the calculation) if (n==0) return 0; if (s>n) s =n; double d2 = d; double w = 0; double k = 0; for (int i=n-1; i>=n-s; i--) { double u = (x[i]-p) / h; w += d2; //Epanechnikov //k += d2 * (3.0/4.0) * (1 - u*u) * (Math.abs(u)<=1 ? 1 : 0); //Uniform // k += d2 * (1.0/2.0) * (Math.abs(u)<=1 ? 1 : 0); //Triangle // k += d2 * (1- Math.abs(u)) * (Math.abs(u)<=1 ? 1 : 0); //Quartic //k += d2 * (15.0/16.0) * (1 - u*u) * (1 - u*u) * (Math.abs(u)<=1 ? 1 : 0); //Gaussian k += d2 * (1/Math.sqrt(2*Math.PI)) * Math.exp(-0.5 * u * u); //Cosinus //k += d2 * (Math.PI/4.0) * Math.cos(Math.PI/2 * u) * (Math.abs(u)<=1 ? 1 : 0); d2 = d2 * d; } k = k /(w*h); return k; } public static double densityAtPoint2D(double[] x, double[] y, int n, double h1, double h2, double px, double py, double d, int s) { // x,y are the arrays of sample data points (ordered by t, 0 is prev. n-1 is actual // n is the number of existing points in the array // h is the bandwidth // p is the point at which to calculate the estimate // d is the decay (assumes point at n-1 is the most recent one, then it weights the points as d^t) // decay is just an addition to allow weighting the most recent points // s is the window (number of points to use for the calculation) if (n==0) return 0; if (s>n) s =n; double d2 = d; double w = 0; double k = 0; for (int i=n-1; i>=n-s; i--) { double ux = (x[i]-px) / h1; double uy = (y[i]-py) / h2; w += d2; //Epanechnikov //k += d2 * (3.0/4.0) * (1 - ux*ux) * (Math.abs(ux)<=1 ? 1 : 0) * (3.0/4.0) * (1 - uy*uy) * (Math.abs(uy)<=1 ? 1 : 0); //Gaussian k += d2 * (1/Math.sqrt(2*Math.PI)) * Math.exp(-0.5 * ux * ux) * (1/Math.sqrt(2*Math.PI)) * Math.exp(-0.5 * uy * uy); d2 = d2 * d; } k = k /(w*h1*h2); return k; } public static double derivativeAtPoint(double[] x, int n, double h, double p, double d, int s) { // x is the array of sample data points (ordered by t, 0 is prev. n-1 is actual // n is the number of existing points in the array // h is the bandwidth // p is the point at which to calculate the estimate // d is the decay (assumes point at n-1 is the most recent one, then it weights the points as d^t) // decay is just an addition to allow weighting the most recent points // s is the window (number of points to use for the calculation) if (n==0) return 0; if (s>n) s =n; double d2 = d; double w = 0; double k = 0; for (int i=n-1; i>=n-s; i--) { double u = (x[i]-p) / h; w += d2; //Gaussian k += d2 * (1/Math.sqrt(2*Math.PI)) * Math.exp(-0.5 * u * u) * (1/h) * u; d2 = d2 * d; } k = k /(w*h); return k; } }